Region-based Approaches and Descriptors Extracted from the Co- Occurrence Matrix
نویسندگان
چکیده
Recently proposed texture descriptors extracted from the co-occurrence matrix across several datasets is surveyed and validated in this paper; moreover, two new methods for extracting features from the Gray Level Co-occurrence Matrix (GLCM) are proposed. The descriptors are extracted not only from the entire GLCM but also from subwindows. These texture descriptors are used to train a support vector machine. We also explore region-based approaches, which use different methods to divide each image into two different regions; different descriptors are extracted from each region. In this work methods based on saliency detection, edge detection, and wavelets are compared, and some of their fusions are reported as well. Region-based approaches are combined with different methods for extracting features from the GLCM and with three state-of-the-art descriptors: local ternary patterns, local phase quantization, and rotation invariant co-occurrence among adjacent local binary patterns. Experimental results show that the tested approaches improve performance of standard methods. The generality of the proposed descriptors is demonstrated on 15 datasets, and different statistical comparisons based on the Wilcoxon signed rank test are reported that confirm the goodness of the proposed approaches. Experiments show that the new methods for extracting features from the GLCM greatly improve the standard features that are typically extracted, and that the regionbased approach boosts the performance of texture descriptors extracted from the whole image. The MATLAB source code of all the proposed approaches will be made available to the public at https://www.dei.unipd.it/node/2357.
منابع مشابه
Different Approaches for Extracting Information from the Co-Occurrence Matrix
In 1979 Haralick famously introduced a method for analyzing the texture of an image: a set of statistics extracted from the co-occurrence matrix. In this paper we investigate novel sets of texture descriptors extracted from the co-occurrence matrix; in addition, we compare and combine different strategies for extending these descriptors. The following approaches are compared: the standard appro...
متن کاملImproving the descriptors extracted from the co-occurrence matrix using preprocessing approaches
In this paper, we investigate the effects that different preprocessing techniques have on the performance of features extracted from Haralick’s co-occurrence matrix, one of the best knownmethods for analyzing image texture. In addition, we compare and combine different strategies for extracting descriptors from the cooccurrence matrix. We propose an ensemble of different preprocessing methods, ...
متن کاملComputer Communication & Collaboration (2013)
One of the first methods for analyzing the texture of an image was proposed in 1979 by Haralick, who introduced the co-occurrence matrix for calculating a set of image statistics. In this paper we focus on novel texture descriptors extracted from the co-occurrence matrix. It is well known that scale is important information in texture analysis, since the same texture can be perceived as differe...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملپنهانشکنی تصویر براساس ویژگیهای ماتریس هموقوعی
In this paper two novel steganalysis methods is presented based on co-occurrence matrix of an image. It is shown that by using features extracted from this matrix, we can differentiate between cover and stego images. These features include energy, entropy, contrast, inverse difference moment, maximum probability and correlation. We use SVM classification for separation of cover and stego imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015